

A new generation of fast X-ray and particle imagers with single-quantum analysis for applications non-destructive testing and space

Erik H.M. Heijne¹, Jan Jakubek², Michael Campbell¹, Xavier Llopard¹, Rafael Ballabriga¹, Jerome Alozy¹, Lukas Tlustos¹, Stanislav Pospisil³

¹ European Organization for Nuclear Research (CERN), Geneva, Switzerland² ADVACAM s.r.o., Prague, Czech Republic³ IEAP CTU, Prague, Czech Republic

Abstract: Semiconductor pixel detectors, originally developed for high energy particle tracking at the

CERN Large Hadron Collider, have demonstrated very interesting properties for applications out of the field of accelerator physics. After 3 decades of development the principle of "quantum counting" or "photon counting" imaging detectors became well established. This technology was elaborated and modified for a range of practical applications such as medical imaging, nondestructive testing, computed tomography, electron microscopy, mineral analysis, dosimetry or even space weather forecasting. The principle of the single quantum tracking detectors is a direct detection and digitization of the complete information for each quantum (e.g. X-ray photon). The incident quanta generate signals in a cluster of pixels, from which one can recognize characteristics of the quantum including its energy (calibrated in keV), time of arrival (~100 ps), precise impact position (subpixel). Different particle types such as X-ray or gamma photons, electrons, ions, etc. produce distinctive patterns allowing very effective suppression of unwanted background in images. Identification of coincidences (e.g. Compton scattering or XRF) improves the image quality even further. The full suppression of the electronic noise brings outstanding image quality in radiographic applications. The ultrahigh dynamic range enabled by excellent signal to noise ratio (>thousands) is limited only by intensity of radiation and exposure time. The multichannel or even fully spectroscopic energy information helps to resolve a material composition of samples. The parallel signal processing in pixels and the data-driven, multi-port readout enable fast imaging, including observation of sub-ms dynamic processes. Examples will be presented for use in non destructive testing.

A new generation of fast X-ray and particle imagers with single-quantum analysis for applications non-destructive testing and space Jan Jakůbek, Erik H.M. Heijne

DVACABAM Imaging the Unseen

Dr. Erik Heijne

Supersight: See invisible

- > Particle physics pre-history:
- > penetrating radiation discovery ...

Cloud Chamber 1911 Wilson, Cavendish Lab, Cambridge, Nobel Prize 1927

Bubble Chamber 1955 Fermilab

Imaging

detector

Wilhelm Conrad Roentgen X-ray image of his wife's hand, 1895

DVACAM

Imaging the Unseen

Nuclear emulsions: Various invisible particles discovered

∧ DVACAM Imaging the Unseen

Most precise, most revealing identified many of the elementary particles

...but by far the slowest: takes ~a week to see an exposure

Radium decay

- > 1935 1965 Illford Ltd Kodak "nuclear emulsion"
- > Cecil Powell : 1947 pion discovery, Nobel 1950

Much higher detection speed needed Silicon diodes ...

NDVACAM Imaging the Unseen

March 1973: Si diode detectors for muon flux monitoring $10^2 - 10^8$ cm⁻² in the shield of the East Area neutrino beam

Fig. 4.1 Current pulses, induced by the muon flux in a 500 μ m thick detector, measured over a 50 μ termination as a function of time. The current in individual pulses shows variations, related to the variation of the number of accelerated protons. The duration of each proton bunch is 10 ns.

- (a) A complete PS extraction; 18 pulses were directed to the neutrino area. Horizontal divisions 500 ns.
- (b) At 70 V bias there is no total depletion; not all charge is collected, as can be seen from the still decreasing current, when the next pulse begins. Horizontal division 100 ns.
- (c) At 270 V bias all charge is collected after 70 ns (50 ns per division).

PS beam has 18 or 20 bunches of 10ns: protons ->pions->muons

Higher speed? ...

DVACAM Imaging the Unseen

- > 1920 1965 electronics based on electrodes in vacuum tubes radio also uses 'crystal oscillator' as frequency reference
- > 1940 1960 study of semiconductors & growth of monocrystals selenium, GaAs, then Ge, but Si is difficult and comes late
- > 1943 AgCl crystal is first semiconductor detector (electrons)
 Utrecht, P. van Heerden recorded electron energy spectrum
- > 1960 1970 first complex integrated circuits; Moore's law 1965 R&D worldwide (Kooi, 1966 LOCOS), stronger manufacturing in USA East: IBM, BellLabs, Texas, RCA,... West: Fairchild, Intel,...

4 bit CPU 1971 Intel 4004 10μm nMOS

Imaging with Si diodes? Neutrino beam profile monitors

DVACAM Imaging the Unseen

The only option:

Diode Array

calibration by moving box

IEEE symposia: where new things begin

- > 1979 IEEE-Nuclear Science Symposium in San Francisco resulted in:
- > Project for silicon microstrip detector, implemented by April 1980

The fabrication of the first silicon microstrip detector was demonstrated nearly simultaneously by a team with Erik H.M. Heijne and independently by Robert Klanner and Gerhard Lutz.

2nd result of IEEE:

Imaging the Unseen

DVACAM

Little box with sequoia seeds, bought at the Muir Woods museum shop.

45 years later

∧ DVACAM Imaging the Unseen

Silicon microstrip detectors now major instruments in LHC. Example: Vertex Locator LHCb (the lower half of it)

But still not finished:

- Ambiguities when more particles cross the detector simultaneously
- Hardly usable for imaging

Erik Heijne and his sequoia tree in the garden

Prehistory of imagers: CCD (1969)

A D V A C A M Imaging the Unseen

Exposure: Potential well accumulates ionization charge

Read-out: altering potentials on electrodes charges are moved to output

In the late 1960s, <u>Willard Boyle</u> and <u>George E.</u> <u>Smith</u> at Bell Labs were researching MOS technology while working

on <u>semiconductor bubble memory</u>. They realized that an electric charge was the analogy of the magnetic bubble and that it could be **stored on a tiny MOS capacitor**. As it was fairly straightforward to <u>fabricate</u> a series of MOS capacitors in a row, so that the charge could be stepped along from one to the next.^[3] This led to the invention of the **charge-coupled device** by **Boyle and Smith in 1969.**

Pixel Workshops Leuven 88-90 & Bari 96 **ADVACAM**

> expose & develop ideas, inspiration

- > confront IC & sensor specialists
- > academy: IMEC, EPFL, ETHZ, TU Delft, PoliMilano
- > industry: Philips, CSEM, LETI, Canberra, ..

Fig. 1. Schematic drawing of the analog front end

- > learn about projects of other teams
- > RAL, SLAC, LBL, MPI, INFN, Penn, CEA, LAL, ...

16 CHANNELS COLLABORATION IMEC LEUVEN

Vittoz CSEM-EPFL	Nucl.Instr.Meth.A275-3(1989)
in-pixel circuit	Nucl.Instr.Meth.A305-3(1991)
	Nucl.Instr.Meth.A395-3(1997)

Combination of both principles? (1988)

Basic idea:

2D array of diodes connected to Independent chip for signal processing.

=> 2 chips: Hybrid technology

1st chip: pixelated sensor

2nd chip: CMOS readout - separate channel for each pixel

'Dream' proposal

processing of the quantum signal in each single pixel <u>The Silicon Micropattern Detector</u> <u>A Dream ?</u> aim: see cluster patterns

and identify particles/quanta Erik Heijne CERN-EF Pierre Jarron Nicola Redaelli

Alf Olsen

SI Oslo

Quantum dosimetry US Patent 8168953 Heijne-Pospisil subm 2007

> London Conference on Position-Sensitive Detectors 7-11 sept 1987

Silicon Micropattern Detector tentative characteristics E. HE SNE LONDON CONF. 1987 - 2-dimensional array of detecting elements

DVACAM

Imaging the Unseen

just 35 years ago

- granularity of 20-100 µm
- no insensitive regions between segments
- in situ signal processing, giving digital output zero suppression, local ADC Bingky of
- memory function until external trigger/clear
- hierarchical information structure using mosaic of devices

- recognition of useful data (patterns)

- active area per device > 100 mm²

 $1m^2 = 10^4$ devices

 boundary conditions in: power dissipation < .1 W/cm²

radiation tolerance 10⁷ rad

1014 neutrons Nim (273 (1988) 615

RD19 project

NDVACAM Imaging the Unseen

> First matrix tested 1989, CERN+EPFL & ETHZ (Faselec SACMOS3µm)

- synchronous amplifiiers, 10MHz
- wirebond pads left no space
 for sensor guardrings -> repeat

RD19 collaboration: starting point for LHC experiments

> 1991 Omega chip 16x63 pixels, 75x500µm, strobed binary

1 1 IIII MPWCERNIUI JUIN 91

Anghinolfi et al.. IEEE NS-39(1992) 654-661

13 A nice event seen in the 3 pixel planes. Note the dip angle of the tracks.

F. Anghinolfi^{1‡}, P. Aspell^{1‡}, K. Bass¹², W. Beusch¹, L. Bosisio¹⁰, C. Boutonnet², P. Burger¹¹, M. Campbell^{1‡}, E. Chesi¹, C. Claeys⁵, J.C. Clemens³, M. CohenSolal³, I. Debusschere⁵, P. Delpierre², D. Di Bari¹⁴, B. Dierickx⁵, C.C. Enz¹³, E. Focardi¹⁰, F. Forti¹⁰, Y. Gally³, M. Glaser¹, T. Gys¹, M.C. Habrard³, E.H.M. Heijne¹, L. Hermans⁵, R. Hurst⁷, P. Inzani⁸, J.J. Jæger², P. Jarron¹, F. Krummenacher^{*13}, F. Lemeilleur¹, V. Lenti¹⁴, V. Manzari¹⁴, G. Meddeler^{1‡}, M. Morando⁹, A. Munns¹², F. Nava^{6,15}, F. Navach¹⁴, C. Neyer⁴, G. Ottaviani^{6,15}, F. Pellegrini⁹, F. Pengg¹, R. Perego⁸, M. Pindo⁸, R. Potheau³, E. Quercigh¹, N. Redaelli⁸, L. Rossi⁷, D. Sauvage³, G. Segato⁹, S. Simone¹⁴, G. Stefanini¹, G. Tonelli¹⁰, G. Vanstraelen⁺⁵, G. Vegni⁸, H. Verweij¹, G.M. Viertel⁴, J. Waisbard²

CERN¹, Collège de France², CPPM Marseille³, ETHZ⁴, IMEC⁵, INFN and University of : Bari¹⁴, Bologna⁶, Genova⁷, Milano⁸, Modena¹⁵, Padova⁹, Pisa¹⁰, Canberra Semiconductor NV¹¹, GEC-Marconi(Caswell)¹², Smart Silicon Systems SA ¹³

RD19 telescope in Omega WA94

7 detector layers

No false events: Each event in each layer assigned to particle track originating in interaction point

DVACAM

Imaging the Unseen

∧ DVACAM Imaging the Unseen

Key persons

Erik Heijne Initiator and the first leader

Stanislav Pospisil Founder and the first director of IEAP CTU

Michael Campbell Chip designer and current leader of Medipix collaboration

EUROPE

CERN LIBRARIES, GENEVA

EAR RESEARCH CERN DRDC/94-51 RD19 Status Report 6 January 1995

RD19: Status report on 1994 Development of hybrid and monolithic silicon micropattern detectors

Spokesman: Erik H.M. Heijne

CERN¹, Collège de France², CPPM Marseille³, EPFLausanne⁴, ETH Zurich⁵, IMEC Leuven⁶, INFN and University of Bari⁷, Catania⁸, Genova⁹, Milano¹⁰, Modena¹¹, Padova¹², Perugia¹³, Pisa¹⁴, Roma¹⁵, Trieste¹⁶, University GHS Wuppertal¹⁷, Technical University Athens¹⁸, Group Praha¹⁹, Univ. of Glasgow²⁰, Canberra Semiconductor NV²¹I, GEC-Marconi Materials Technology(Caswell)²²I and Smart Silicon Systems SA²³I

F. Antinori¹, C. Arrighi³, H. Beker¹⁵, D. Barberis⁹, G. Batignani¹⁴, K.H. Becks¹⁷, W. Beusch¹, G. Bilei¹³, L. Blanquart³, V. Bonvicini¹⁶, V. Bonzom³, L. Bosisio¹⁶, U. Bottigli¹⁴, C. Boutonnet², P. Burger²¹, M. Campbell¹, E. Cantatore^{1,7}, M.G. Catanesi⁷, B. Checcucci¹³, E. Chesi¹, J.C. Clemens³, M. Cohen Solal³, G. Darbo⁹, J.C. Da Silva³, S. D'Auria²⁰, C. Da Via¹, P. Delpierre³, D. Di Bari⁷, S. Di Liberto¹⁵, B. Dierickx⁶, D. Elia⁷, C.C. Enz⁴, A. Fallou³, M. Fantacci¹⁴, E. Focardi¹⁴, F. Forti¹⁴, Y. Gally³, M. Garg¹⁷, M. Glaser¹, S. Glitza¹⁷, E. Grigoriev³, T. Gys¹, M.-C. Habrard³, G. Hallewell³, E.H.M. Heijne¹, L. Hermans⁶, J.M. Heuser¹⁷, A. Jacholkowski^{1,7}, J.J. Jæger², J. Jakubek¹⁹, P. Jarron¹, P. Jirousek¹⁹, S. Kavadias¹⁸, S. Kersten¹⁷, P. Kind¹⁷, F. Krummenacher^{23*4}, R. Leitner¹⁹, F. Lemeilleur¹, V. Lenti⁷, G. Lenzen¹⁷, M. Letheren¹, M. Lokajicek¹⁹, L. Lopez¹, D. Loukas¹⁸, M. LoVetere⁹, M. Macdermott⁵, G. Maggi⁷, T. Mouthuy³, A. Muns²², P. Musico⁹, P. Nava¹¹, V. O'Shea²⁰, M. Pallavicin⁹, F. Pellegrini¹², F. Pengg^{1†}, M. Pindo⁹, S. Pospisil¹⁹, R. Potheau³, E. Quercigh¹, N. Redaelli¹⁰, J. Ridky¹⁹, I. Ropotor¹⁷, U. Röser⁵, L. Rossi⁹, K. Safarik¹, S. Saladino⁷, D. Sauvage³, G. Segato¹², P. Sicho¹⁹, S. Simone⁷, V. Vrba¹⁹ and J. Waisbard²

Also with EPF Lausanne, Switzerland,

† Fellowship Austria

The companies Canberra, GEC-Marconi and SSS are not formally member of the collaboration

History: CERN, CTU and IEAP ...

Stanislav Pospisil the first director of of IEAP CTU

2011 Seminar of Erik Heijne in IEAP CTU

Photo by Cinzia Da Via: one of early beam test periods within RD19 in 1993

DVACAM

Imaging the Unseen

Results 1991-1999 from RD19

> Started with Hybrid & Monolithic-SOI

SOI abandoned because difficult+expensive

- > Complete hybrid telescopes produced
- Exploited immediately in Omega ion experiments
 high occupancy from ion interactions needs pixels
- > Soon also in Delphi forward tracker (CdF&Marseille)
- > First radhard-by-design pixel circuit for ALICE
- > this first version (1999) was used without iteration
- > a 2nd version made for LHCb RICH imaging tubes
- > Results convinced LHC community ATLAS, CMS

Instead of just recording particles, use radiation to analyze objects?

DVACAM

Imaging the Unseen

Current technology origin

DVACAM Imaging the Unseen

- > The story started in CERN: RD19 group and **Omega** chip in 90's
- > Development of pixel detectors continues within Medipix collaborations
- > Establishing Institute of Experimental and Applied Physics IEAP under CTU in Prague in 2002

- Miniaturized USB based readout system and software enabled rapid development of many new applications methods and technologies
- > Combining Medipix technology with technology of edgeless silicon sensors developed in VTT

- > Development of the first large area pixel detector with continuous sensitivity in 2013
- > ADVACAM company established (Finland 2012, Czech Rep. 2013)

>Results of this long journey Current technology status ...

ADVACAM Bringing technology out of the lab

DVACAM Imaging the Unseen

> IMAGING THE UNSEEN

We design and produce cameras for material analysis, non-destructive testing, color radiography, or radiation safety

> 30 YEARS OF DEVELOPMENT

Based on CERN single-photon counting technology, our cameras revolutionize a range of industries, from space to medicine

> CONTINUOUS RESEARCH

Experienced team of researchers. New imaging methods are instantly being developed.

> OEM integration

Customized cameras are integrated to devices of our customers and partners in various industries.

Basic principle: Digital signal processing in every pixel

NDVACAM Imaging the Unseen

Advantages:

- Direct conversion: Radiation quantum => electric pulse => digital count + energy + time
- High resolution: 55 microns (or better see later)
- Provides energy sensitive imaging (spectral too)
- Very high signal to noise ratio (theoretically unlimited) => Ultra high dynamic range
- Signal is digital => Very high speed.
- Continuous operating modes for zero deadtime scanning implemented in hardware.

Photon counting & Particle tracking

... in your pocket

Natural radiation recorded in the office

Example: High resolution, high dynamic range X-ray radiography

Photon counting: Ultra-high contrast

Mouse: hair fibers are resolved through its body !

Multichannel: Material sensitivity

Material differences are identified !

X-ray radiography: Ultra high dynamic range!

DVACAM

Imaging the Unseen

Excellent imaging properties!

Noise obeys Poissonian statistics even at very high counts:

- Global stability over 30 minutes:
 SNR = 5000
- Local stability over 1 hour:
 SNR = 2000

Industrial sample: PCB

∧ DVACAM Imaging the Unseen

Fully digital => Very high speed

A D V A C A M Imaging the Unseen

High-speed modes:

- Single frame readout in 250 µs
- Continuous exposure:
 - When the actual frame is being exposed
 - The previous frame is transferred to PC
 - => no dead time
- Special mode for moving objects: Timedelayed-integration (TDI mode):
 - For continuously moving objects (scanning)
 - Image is being shifted within the chip synchronously with the object => no motion blurr

Mining: Mineral ore sample

A D V A C A M Imaging the Unseen

Mineral sorting for mining industry: Fast and long detector for conveyor belts ...

Continuous fast scanning: **12 m² in 10 seconds shown here**

∧ DVACAM Imaging the Unseen

Mouse Heartbeat ...

A D V A C A M Imaging the Unseen

Mouse heartbeat: 670 bpm => 1000 frames per second

Contrast evolution corresponds to blood transfers

WWW.ADVACAM.COM

п јакирек

Easy to integrate: Robotic CT

A D V A C A M Imaging the Unseen

To be checked: Bottom part of fuselage of ultralight plane

∧ DVACAM Imaging the Unseen

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

<#>

∧ DVACAM Imaging the Unseen

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

Standard X-ray image

A D V A C A M Imaging the Unseen

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

Multichannel (14 channels)

Mixed to RGB

A D V A C A M Imaging the Unseen

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

Subtracting pigments seen on the surface

=> Underpaint

A D V A C A M Imaging the Unseen

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

Model identified in Louvre achive

Sketched by Vincent van Gogh

Fully spectral imaging

> Full spectrum can be measured by every pixel

Timepix3 (and new Timepix4):

(-ray fluorescence XRF) imaging

Example:

- **Event based readout** (Not frame based as for Timepix): Each hit pixel transmits the hit information immediately.
- \Rightarrow No dead-time for readout of complete frame.
- Each pixel measures Energy and Time of arrival concurrently.
- Time is measured with precision of 1.56 ns (or ~130 ps)
- Chip can produce data stream of 5 Gbit/s (or 160 Gbit/s).

Anna Pite and a second se

DVACAM

Imaging the Unseen

Particle tracker for hadron therapy by ADVACAM (28x Timepix3)

Eu-152 (Bias=500 V)

Deeply subpixel resolution

∧ DVACAM Imaging the Unseen

Principle:

- Single photon is creates signal in several adjacent pixels => cluster
- 2. The energy is measured by each hit pixel
- 3. Position can be calculated with better precission

Real case:

- At 160 kVp trough 5 mm steel plate
- \Rightarrow Effective energy is 100-120 keV
- \Rightarrow Average cluster of 5 pixels

Subpixel resolution test with the Newest Duplex Image **Quality Identifier**

DVACAM Imaging the Unseen

Recorded spectrum

80

100

Volume [keV]

160 kVp, 0.5 mA, Through 5 mm Fe plate, 100 s exposure

Photon counting

Subpixel 6x (9 µm):

70000 60000

50000 Count 40000

30000 2000

10000

120

140

Gamma camera Visualization of radioactive sources

DVACAM Imaging the Unseen

Based on Compton scattering in the sensor

For each Compton scattering event we can:

- Detect coincidence
- Measure both energies: E₁ and E₂
- Measure both positions in 3D
- => We can reconstruct Compton cone:

E=E1+E2

Compton scattering

... the original purpose is still there

∧ DVACAM Imaging the Unseen

The largest object imaged by our technology (in 3D)

Using smallest detector we do:

Image of so-called space weather: Charged particles directed by magnetic field of earth. Recorder by our detectors orbiting earth on board of ISS.

MiniPIX EDU in classrooms Simplified version of detectors used in space

DVACAM Imaging the Unseen

MiniPIX EDU for Education, physics teaching and basic radiation experiments.

Based on earlier projects: of IEAP CTU and CERN such as "CERN technology in schools" by Becky Parker.

It is small and less expensive. Many processes can be directly observed in normal environment of common classroom.

No accelerator is needed to watch principles of particle physics!

Example: Inhaled radioactivity

∧ DVACAM Imaging the Unseen

Did you know that even simple face mask used against CORONA virus significantly reduce the amount of inhaled radioactivity?

Use the MiniPIX detector

1. Measure Fresh mask

2. Use it for 5 min

3. Measure Used mask

Why?

- Radon decay products are ionized.
- They stick to dust and aerosols.
- Mask filters them out greatly.
- Exhaled air is filtered in lungs!!!

... and much more

∧ DVACAM Imaging the Unseen

> Photon counting imaging technology is applied in many other fields:

- > Nondestructive testing
- > Electron microscopy
- > X-ray diffraction
- > Medical
- > Radio therapy
- > Space
- > Science

> Future:

- Exploitation of excellent time resolution ~100 ps => solid state Lidars ...
- Extent sensitivity range through the XUV, UV, Visible down to Near Infra Red (partners?) => Lasers
- > Implement track processing into the chip

Thank you for attention

0